

Our Strategy

In-house R&D

Focus on in-house R&D leveaging our allosteric inhibitor tech platform rather than in-licensing

Global FIC

Aim for "first-in-class" drugs over me-too drugs

Global Market

Explore MNC partnership to capture global market

Full Function Pharma

Expand areas of manufacturing and commercialization in China

Our Progression

Clinical Milestones

JAB-3312 (SHP2i)

- Mono Dose expansion initiated
- Globally initiated 4 combos
 - combo w/PD-1

(Pembrolizumab)

- combo w/MEKi (Binimetinib)
- combo w/KRAS G12Ci
 - Sotorasib, Global
 - JAB-21822, China
- combo w/EGFRi (Osimertinib)

JAB-3068 (SHP2i)

New INDs

- China PhIIa mono trial enrollment completed
- · combo w/ PD-1 (JS001) in China

JAB-21822 (KRAS G12Ci) JAB-2485 (Aurora Ai)

JAB-6343 (FGFR4i)

JAB-BX102 (CD73 antibody)

JAB-21822 (KRAS G12Ci)

- RP2D determined
- Pivotal trial to be initiated in 2022 2H (NSCLC)
- NSCLC
 - mono 2/3L,
 - mono STK-11 co-mutant 1L,
 - combo w/PD-1

CRC (combo w/EGFR mAb)

JAB-8263 (BETi)

- Dose escalation ongoing
- Solid tumor and hematological malignancy in US ad China

JAB-21822 NDA

Commercial Manufacturing First Product Launch

2023-2024

AbbVie Partnership regarding SHP2

HKEX listing

2021-2022 March

Founded in 2015 Set the goal of global innovation

2020

Our Team

Yinxiang Wang Ph.D. Chief Executive Officer Chairman of our Board

- · Chairman and CEO
- · Former Board Director and CEO of Betta Pharma
- Chairman on the New Drug R&D Committee of China for PhIRDA (2017-2019)
- Vice Chairman on the Anti-tumor Drug **Professional Committee of Chinese** Pharmaceutical Association
- · Over 20 years of experience in the industry

Xiaojie Wang, EMBA President of Administration

Yunyan Hu, M.S. Senior Vice President

Andrea Wang-Gillam M.D, Ph.D. CMO and Senior Vice President and Information Management

Haijun Wang, Ph.D. Senior Vice President of Data

Wayne Long, Ph.D. Vice President of Chemistry

Yuli Ding, M.S. Vice President of Clinical Development

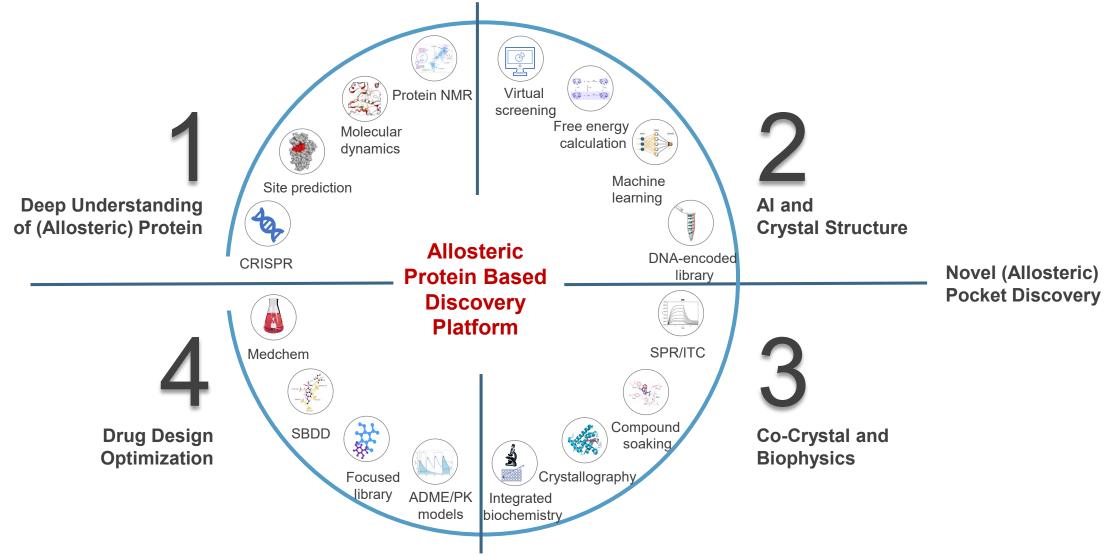
Bin Fan, Ph.D. Vice President of Clinical Pharmacology

Qiao Li, Ph.D. Vice President of Biostatistics and Data Science

Yanping Wang, M.S. Vice President of Pharmacology

Hong Cao, M.S. Vice President of CMC

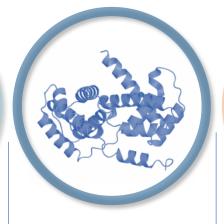
Jian Kang, M.D. Vice President of Intellectual Property



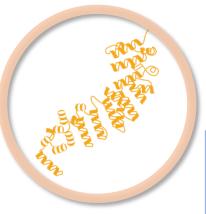
Tiffany Yang, M.S. Vice President of **Human Resources**

Our Allosteric Inhibitor Technology Platform

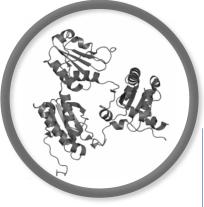
Advance Novel Drug Development in Key Oncogenic Pathways


RAS

The beating heart of cancer


MYC

The master regulator


I/O pathways

The Defensive barrier

RB pathway

The brake pads of cancer

Tumor Metabolic Pathways

The suppliers of cancer

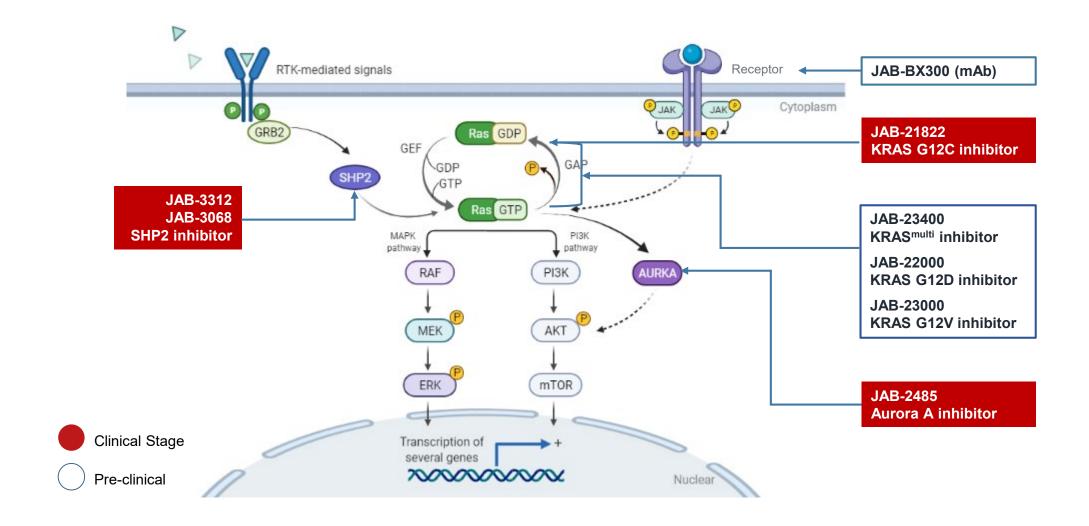
p53

The guardian of the genome

The "BIG 6" pathways cover 70%-80% cancer.

^{1.} Nusse R, Clevers H. Cell 2017;169(6):985-99;

Lane DP Nature 1002:258/6281):15 6


Waters AM, Der CJ. Cold Spring Harb Perspect Med 2018;8(9):a031435;

^{4.} Dang CV, et al. Cell 2012;149(1):22–35.

Deep Dive in RAS Pathway to Address Unmet Need

Our SHP2 Inhibitor JAB-3312 as a Potential Best-in-Class Drug

TOP3 SHP2 inhibitor

(in order of US FDA IND filing date)

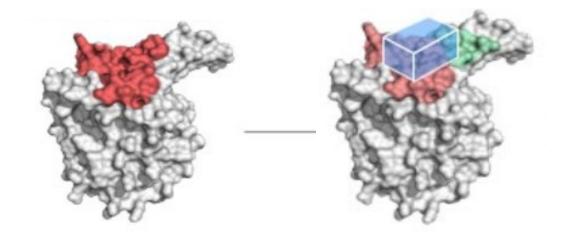
Company Name	Company	US FDA IND	
TNO-155	Novartis	May 2017 (US)	
JAB-3068 JAB-3312	Jacobio/ AbbVie	Dec 2017 (US)	
RMC-4630	Revolution Medicines/Sanofi	Sep 2018 (US)	

SHP2 Functions in the Downstream of anti-PD-1 and Upstream of KRAS with Tremendous Market

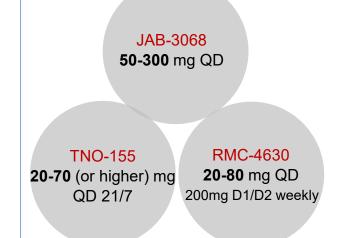
New cases estimated worldwide with RAS/MAPK pathway alterations

	nillion dwide)	BRAF class III/ NF1 LOF mutant solid tumors	KRASi / EGFRi MEKi combo	
New cases estimated worldwide per annum	90+% with limited/no treatment option	SHP2 mono s strategies	SHP2 combo strategies	

Market potential and clinical efficacy of SHP2 in the PD-(L)1 pathway



Our SHP2 Inhibitor JAB-3312 as a Potential Best-in-Class Drug


Preclinical comparison

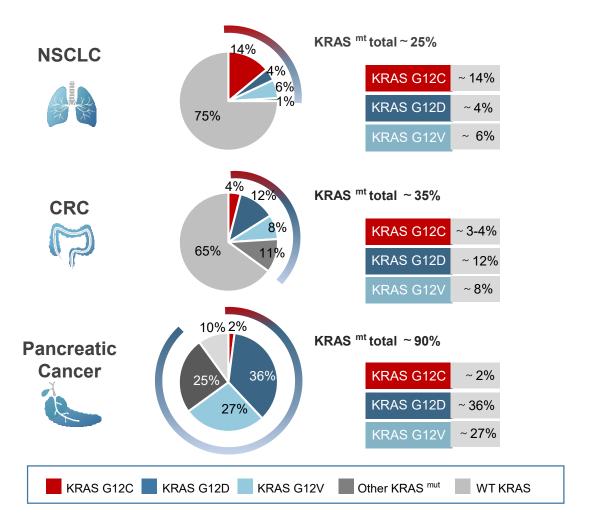
	JAB-3312	RMC-4550 In-house or ref
SHP2 biochemical IC ₅₀ (nM)	1.5	10.4
Binding kinetics KD (nM)	0.206	13.6
Cellular p-ERK IC ₅₀ in NCI-H358 (nM)	3.64	28 (ref)
Cellular p-ERK IC ₅₀ in KYSE-520 (nM)	0.32	9.1 (ref)
Cellular proliferation KYSE-520 IC ₅₀ (nM)	3.5	127

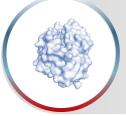
Clinical dose

SHP2 Inhibitor-Global Development Plan

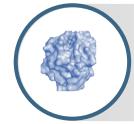
Given the unique dual-blockade mechanism of SHP2 against RAS pathway and PD-(L)1 pathway, we plan to develop our SHP2 inhibitors as monotherapy and as a backbone for various combination therapies

Asset	Regimen	Indications	Phase I	Phase IIa	Recent development
	Mono	Solid tumors	US trial		
	Mono	Solid tumors	China trial		Phase IIa initiated with FPI in Jan 2022
JAB-3312	Mono	BRAF class 3/ NF1 LOF mutant solid tumors	US trial		Phase IIa initiated with FPI in Dec 2021
shp2 abbvie	Combo w/PD-1 mAb	NSCLC, HNSCC, ESCC	Global trial		Phase IIa Initiated in Feb 2022
0.00712	Combo w/EGFRi	Osimertinib resistant NSCLC	Global trial		FPI in Jan 2022
	Combo w/KRAS G12Ci	KRAS G12C mut NSCLC	Global trial		FPI in Jan 2022
	Combo w/MEKi	KRAS mut CRC/ Pancreatic cancer	Global trial		
140.000	Mono	Solid tumors	US trial		
JAB-3068 SHP2	Mono	ESCC, HNSCC, NSCLC	China trial		
abbvie	Combo w/PD-1 mAb	ESCC, HNSCC, NSCLC	China trial		

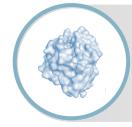




KRAS Prevalence In Tumors With High Unmet Need 1-3


- **JAB-21822 KRAS G12Ci**

Currently in Phase IIa
Pivotal trial to be initiated in China in 2022 H2


JAB-23400 KRAS^{multi} inhibitor

Candidate nominated in Feb 2022 Target to submit IND in 2023

JAB-22000 KRAS G12Di

Lead optimization stage Target to submit IND in 2023

JAB-23000 KRAS G12Vi

Hit-to-lead stage
Target to submit IND during 2023 to 2024

- 1. ZehirA, et al. Nat Med. 2017;23(6)703-713.
- 2. 2. KrakstadC, et al. PLoSOne. 2012;7(12):e52795.
- 3. NIH TCGA: The Cancer Genome Atlas. February 11, 2021. https://www.cbioportal.org.

KRAS G12Ci JAB-21822-Global Development Plan

Accelerate the clinical development of JAB-21822 utilizing strong internal capacities and extensive external resources

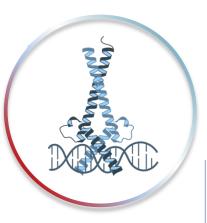
- · Achieved FPI in China within 2 months after IND approval
- Monotherapy and combination therapies are being rapidly advanced in clinical setting, sustaining competitive advantage.

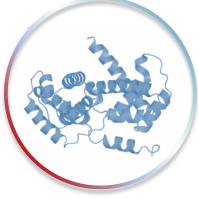
Asset	Regimen	Indications	IND	Phase I	Phase IIa	Recent development	Upcoming Milestone (expected)
	Mono	NSCLC, CRC	Global trial		 	FPI in Sep 2021	
	Mono	NSCLC, CRC	China trial			Dose expansion initiated with FPI in Mar 2022	Pivot trial to be initiated in 2022 2H
JAB-21822	Mono	NSCLC with STK-11 co-mutation	Global trial			IND approved In Oct 2021	FPI (2022 2H)
KRAS G12C	Combo w/PD-1 mAb	NSCLC	China trial			IND approved in Oct 2021	
	Combo w/SHP2i	NSCLC	China trial			IND approved in Feb 2022	FPI (2022 Q2)
	Combo w/EGFR mAb	CRC	China trial			FPI in Feb 2022	

Preliminary Clinical Results

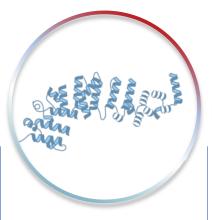
- RP2D determined
- Impressive preliminary efficacy
- Safe and well tolerated

Exploring potential global partnering deal while Jacobio retains the greater China right

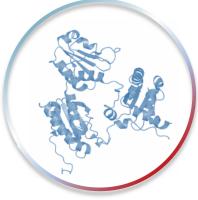



RAS

JAB-3312/3068 JAB-21822 JAB-23400 JAB-22000 JAB-23000 JAB-BX300


MYC

JAB-8263 JAB-2485


I/O pathways

JAB-3312/3068 JAB-BX102 JAB-BX300 JAB-26000

RB pathway

JAB-2485

Tumor Metabolic Pathways JAB-24000

P53

JAB-30000

Nusse R, Clevers H. Cell 2017;169(6):985–99;

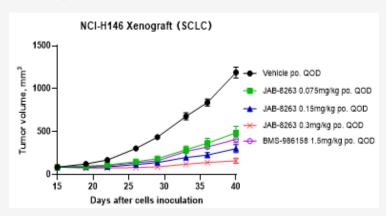
^{2.} Lane DP. Nature 1992;358(6381):15–6;

Waters AM, Der CJ. Cold Spring Harb Perspect Med 2018;8(9):a031435;

Waters AM, Der CJ. Cold Spring Harb P
 Dang CV, et al. Cell 2012;149(1):22–35.

Our Diverse Pipeline Targeting Critical Pathways

Asset	Target & pathway	Indications	Combo Strategy	Pre-clinical	Phase I	Phase IIa
JAB-3312/ JAB-3068	SHP2 (RAS pathway, I/O)	Solid tumors, including NSCLC, HNSCC, ESCC	KRASi, PD-1, EGFRi	US, China		
JAB-21822	KRAS G12C (RAS pathway)	NSCLC, CRC	SHP2i, PD-1, EGFR mAb	US, China, Europe		
JAB-8263	BET (MYC pathway)	Solid tumors Blood tumors	Aurora Ai, JAKi, PD-1	US, China		
JAB-2485	Aurora A (RB pathway)	Solid tumors	BETi, SHP2i, KRASi	US		
JAB-BX102	CD73 mAb (I/O)	Solid tumors	PD-1	US, China		
JAB-24114	Undisclosed (Tumor metabolic pathway)	NSCLC, HNSCC	KRASi, P53i, BETi, PD-1			
JAB-BX300	Undisclosed (RAS pathway)	PDAC, CRC	SHP2i, KRASi			
JAB-26766	Undisclosed (I/O)	SCLC, HNSCC, ESCC	SHP2i , PD-1			
JAB-23400	KRAS ^{MULTI} (RAS pathway)	PDAC, CRC, NSCLC	SHP2i, SOS1i, Aurora Ai			
JAB-22000	KRAS G12D (RAS pathway)	PDAC, CRC, NSCLC	SHP2i, SOS1i, Aurora Ai			
JAB-23000	KRAS G12V (RAS pathway)	PDAC, CRC, NSCLC	SHP2i, SOS1i, Aurora Ai			
JAB-30000	P53 (P53 pathway)	Solid tumors	KRASi , JAB-24114 , PD-1			



Potent BET Inhibitor JAB-8263

Asset	Regimen	Indications	IND	Phase I	Recent development	Upcoming Milestone (expected)
	Mono	Solid tumors	US trial			
JAB-8263 BET	Mono	Solid tumors	China trial		FPI in Feb 2022	RP2D to be determined in 2022 2H
	Mono Combo w/JAKi	MF and AML	China trial		FPI in Apr 2021	

Strong Antitumor Effect

- Highly effective in solid and hematologic cancer models
- Greater anti-tumor response at lower dose

JAB-8263(0.15 mg/kg) BMS-986158(1.5 mg/kg) TGI=80% TGI=71%

Preliminary Clinical Results

- · Early signals of clinical benefit
- Wide safety window
- Favorable PK profile

Market Potential

To date, there has been no approved and marketed BET inhibitors globally.

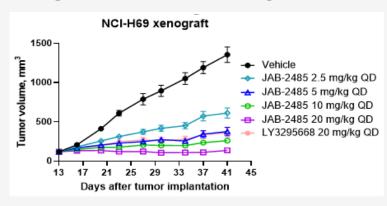
Indications:

Solid Tumor

NMC, NSCLC, SCLC, CRPC, ESCC, Ovarian Cancer (4.7 million by 2030)

Hematologic Tumors

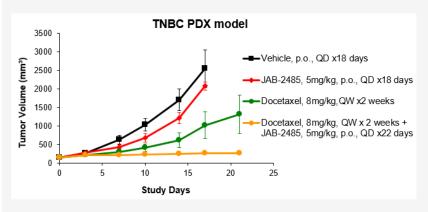
MF (127,500 by 2030) AML (187,600 by 2030)



Highly Selective Aurora A Inhibitor JAB-2485

Asset	Regimen	Indications	IND	Phase I	Recent development	Upcoming Milestone (expected)
JAB-2485 Aurora A	Mono	Solid tumors	US trial		IND approved in Jan 2022	FPI (2022 2H)

- No Aurora A kinase inhibitor had been approved and marketed globally.
- JAB-2485 is one of top 3 highly selective Aurora A inhibitors in clinical stage


Strong Anti-tumor Effect in Xenografts

Greater anti-tumor response at lower dose

JAB-2485 (5 mg/kg) LY329566 (20 mg/kg) TGI=79% TGI=79%

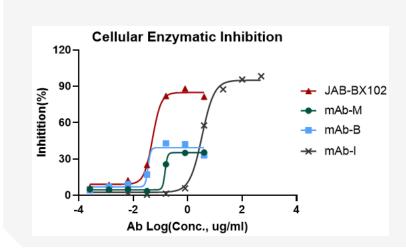
Combinational Anti-tumor Effect

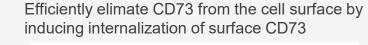
 Significant synergistic effect when combining with chemotherapy.

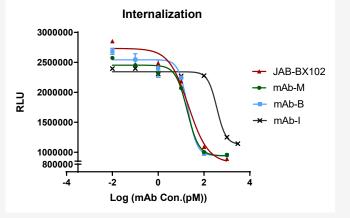
- More specificity:
 - ~2000-fold selectivity over Aurora B in biochemical and cell-based assay
- Indications

Small cell lung cancer (330,000 new cases in 2020)

Triple negative breast cancer (339,000 new cases in 2020)


Highly Differentiated Anti-CD73 Antibody JAB-BX102


Clinical Plan


Asset	Regimen	Indications	IND	Phase I	Recent development	Upcoming Milestone (expected)
JAB-BX102	Mono Combo w/PD-1 mAb	Solid tumors	US trial		IND approved in Oct 2021	FPI (2022 1H)
CD73 mAb (I/O)	Mono	Solid tumors	China trial		IND submitted in Jan 2022	

Excellent Efficacy & Safety

Direct inhibition of CD73 enzyme activity – better efficacy

- ✓ Recognize the N-terminal epitope of CD73
- ✓ In vivo PK/PD model, complete CD73 inhibition without the "hook effect"

Key Pipeline Assets with First-in-Class Potential Global TOP3 Potential

Clinical Stage

JAB-3068/3312

- SHP2 inhibitor
- 2nd FDA IND
- Clinical Phase IIa

JAB-2485

- Aurora A inhibitor
- 2nd FDA IND
- ீ Clinical Phase I

2022 IND

JAB-24114

- Tumor metabolic Pathway
- One Program in Ph I
- [⊕] 2022 IND

JAB-26766

- <u>I/O</u>
- One Program in Ph I
- 8 2022 IND

JAB-BX300 (mAb)

- RAS pathway
- One Program in Ph I
- <u>2022 IND</u>

2023-2024 IND

JAB-23400

- KRAS^{multi} inhibitor
- No IND Globally
- [⋄] 2023 IND

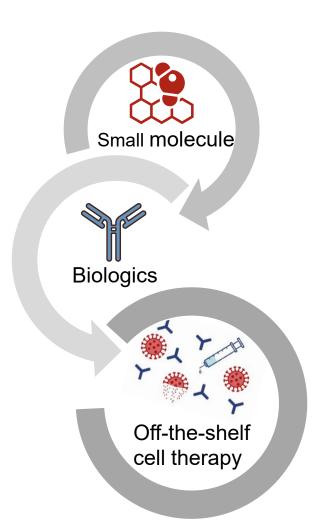
JAB-22000

- KRAS G12D inhibitor
- No IND Globally
- ⊕ 2023 IND

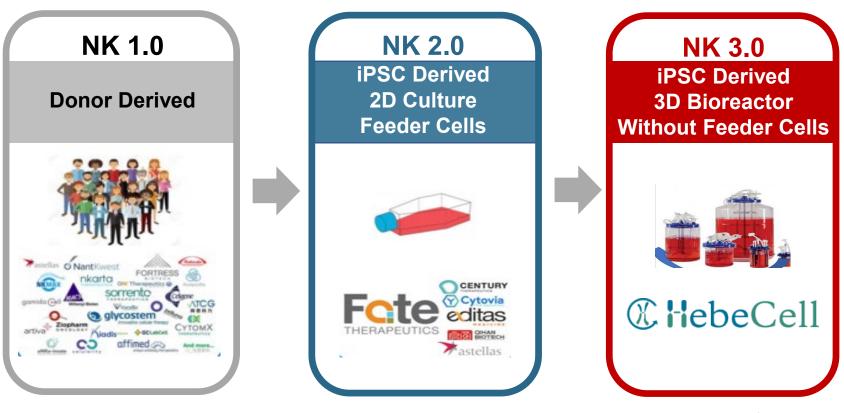
JAB-30000

- № P53 inhibitor
- No IND Globally
- ≗ 2023-2024 IND

JAB-23000


- **KRAS G12V inhibitor**
- No IND Globally
- 6 2023-2024 IND

Strategic Layout in Cell Therapy


- Collaborate with Hebecell to develop the next-generation iPSC-NK cell therapy
- Key transaction terms:
 - \$25M of consideration in total
 - 19.74% of the share capital (fully-diluted)
 - Dr. Wang Yinxiang was appointed as Chairman of Hebecell
- Boston R&D Center around 30 employees
 Beijing R&D Center established in Q4 2021
- Expected IND 2023
- Enhance our capability to explore clinical value of combination therapies between our current programs and off-the-shelf cell therapies

iPSC Derived-NK -- Hebecell Platform

3D Culture Without Feeder Cells

iPSC-NK Is Changing the Game in Cell Therapy

Universal, Off-the-Shelf Cell Products Derived from Renewable Master Cell Lines

	Autologous CAR -T	iPSC Derived NK
Safety		
Graft Versus Host Disease Risk(GvHD)	Low	Low
Cytokine Release Syndrome (CRS) or NeurotoxicityRisk	High	Low
Manufacturing		
Off-the-shelf Product	-	++
Cost of Manufacturing	+++++	+
Ease of Gene Editing	++	++++
Master Cell Bank	-	+++
Homogeneous Product	+	+++
Batch to Batch Variation	Yes	No
Multiple Dosing	No	Yes
Efficacy		
Persistence	+++++	++
CAR-Independent Tumor Cytotoxicity	-	+

Advantages of iPSC-NK

- Off-the-shelf Availability
- Uniform Product
- Patient Accessibility
- Multiplexed Engineering
- Lower GvHD/CRS risk

AbbVie Partnership Expedited Our Global Development

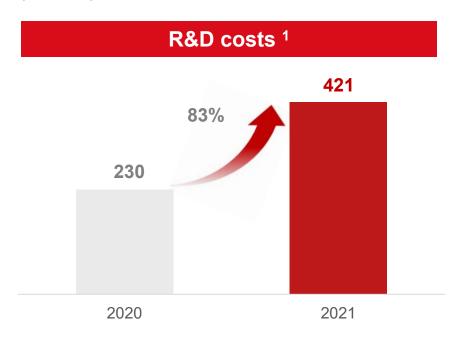
Transformative Collaboration

- Leverage a partner's global clinical, regulatory, medical, patient advocacy and commercial footprint
- Rights of Parties

AbbVie – Worldwide (except for PRC, Hong Kong and Macau)

Jacobio - PRC, Hong Kong and Macau

Financial Arrangement


- Upfront Payment (Received)
 \$45mm
- Milestone Payments
 up to \$810mm \$20mm received
- Royalties
 Low-to-mid Double-digit percentages
- AbbVie will reimburse costs of global clinical development (incl. China) pre registrational trials

Financial Information SELECT COMPANY FINANCIALS

(RMB mm)

- ¹ R&D costs = Cost of revenue + Research and development expenses.

 All R&D costs in relation to AbbVie Collaboration were recorded in "Cost of revenue" account.
- ² As of June 30, 2021, the Group did not have any interest-bearing bank and other borrowing.

